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Heating of spherical alumina particles by high-intensity laser radiation under vacuum conditions to the 

melting temperature is investigated with account for the nonuniform distribution of energy sources wiih 

respect to the particle volume. 

The problems associated with propagation of laser radiation stimulate interest in the influence of the latter 

on solid disperse particles. Vacuum heating of microparticles with high absorption is investigated in [ 1 - 3  ]. How- 

ever, in the stratosphere along with strongly absorbing particles weakly absorbing particles may exist, including 

those of anthropological origin. 
The present work is devoted to investigation of vacuum heating of spherical alumina particles exposed to 

laser radiation up to the melting point with account for the nonuniform distribution of energy sources with respect 

to the particle volume and the temperature dependences of thermophysical properties of the substance. 
The melting temperature of alumina is 2327 K. The initial heating temperature is taken equal to 293 K. 

According to [4, 5], the complex refractive index m = 1.79-i .  10 -7 changes weakly with temperature at the 

wavelengths 0.69 and 1.06 r For the temperature-dependent specific heat and thermal conductivity the following 

approximate relations are obtained based on the numerical data reported in [6, 7 ]: 

c (T) = 0.098 In T - 0.37 

c (T) = 3.85.10 -5 T + 0.25 

( 2 9 3 _ T _ 8 0 0  K),  

(800 < T _< 2327 K),  

21 (T) = exp [ -  2.78.10 -3 (T - 273) - 2.35] (293 < T _< 400 K),  

21 (T) = 2.19.10 -8 (T - 273) 2 - 5.69.10 -5 (T - 273) + 0.05 

(400 < T _< 2327 K).  

In heating the substance the density is assumed to depend weakly on temperature and to equal p = 3.72 g/cm 3. 

A distinctive property of weakly absorbing particles is the focusing of radiation inside them until the effects 

of superfine optical resonances develop; here the radiation density in the particles increases by several orders of 

magnitude (see, e.g., [8]). 
The change of the temperature with time inside a spherical particle of radius r 0 exposed to radiation at the 

wavelength ;t is described by the heat conduction equation in a spherical coordinate system: 

c ( r )  p OT 1 c) 21 (T)  r 2 o T  + 2 
c3t r 2 Or Or r sin O O0 

Assuming that in vacuum heating of a solid particle, heat is transferred only by radiation in accordance with the 

Stefan-Boltzmann law, we may write the following boundary and initial conditions: 
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Fig. 1. Distribution of the heat release Q/I  (pm -1) along the principal axis 

of an alumina particle with the radius ro = 0.15 #m at ;t = 0.69/t in,  m = 
1.79-i"  10 -7. 

Fig. 2. Heating temperature T/Tmel of an alumina particle vs time t/ti (i = i, 
2, 3, 4) forr0 = 0.15ffm;;t = 0.69ffm, m = 1 .79- i .  10-7; 1) I =  101~ W/cm2, 
tl = 10 -7 sec; 2) I = 108 W/cm 2, t 2 = 10 -5 sec; 3) I = 107 W/cm 2, t3 = 

10 -4 sec; 4) I = 10 6 W/cm 2, t4 = 10 -3 sec. 
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Q (r ,  0 ,  ~o) = ~ IB ,  B = (ERE* r + EoE 0 + E E )/IEol 

By analogy with [9 ], in order to solve approximately the above system of equations we construct, on a computer, 

an absolutely stable local one-dimensional iteration scheme on a space-time grid, put the initial problem into 

correspondence with the difference one, and then solve the obtained system of equations by the factorization method 

[10-12 ]. The boundary-value problem has a solution and it is unique. 

A spherical particle is illuminated by a parallel beam of unpolarized light, and therefore, the temperature 

distribution inside the particle is symmetric relative to the diameter that coincides with the direction of beam 

propagation (the major axis). Therefore the temperature distribution is considered in the plane of the cross section 

of a great circle of the particle. To investigate the distribution dynamics of the temperature field, we calculate 

temperatures in the plane of the cross section of a great circle of the particle upon attaining the temperatures Tmel/4, 

Tmel/2~ 3Tmel/4, and Tmel inside the particle. 
At first we shall consider heating of a small alumina particle exposed to laser radiation at 2 = 0.69 #m. 

Despite a small absorption coefficient the nonuniformity in heat release distribution is insignificant, i.e., the 
focusing of radiation inside small particles is insignificant, which is illustrated by the heat release distribution 

shown in Fig. 1 for particles of radius 0.15 ,urn. In this case the relative degree of nonuniformity of heat release, 

which is determined, according to [9 ], by the expression 6Q = (Qmax - Qmin)/Qm (Qm = 3Ika/4ro is the density 
of the absorbed energy averaged over the particle volume), is c3Q = 1.5. The region of highest values of Q/1 is 
located in the shadow hemisphere. Figure 2 shows the time dependences of the heating temperature in the region 
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TABLE 1. Time t. 102 (Hsec) Required for an Alumina Particle Exposed to Radiation with I = 109 W/cm 2 and 2 = 

1.06 #m to Attain the Temperatures Tmel/4, Tree1/2, 3Tmet/4, and Tree1 

r, ptm 

7 

9 

12 

15 

17 

Tmel/4 

7.57 

2.67 

1.77 

i.05 
1.09 
0.8 

Tmel/2 

45 

11 

6.68 

3.93 

3.7 

2.7 

3Tmel/4 

108 

22 

13 

7.3 

6.8 

4.9 

Tmel 

201 

37 

20 

11 

10.3 

6.9 

of maximum heat release of the alumina particle for different intensities of incident radiation. As is seen, for 

incident radiation intensities up to 1 = 107 W/cm 2 the temperature in the alumina particle increases nonlinearly 

with time, unlike the linear increase in the case of a strongly absorbing soot particle of the same size [2 ]. For the 

incident radiation intensity 1 = 106 W/cm 2 heating of an alumina particle of radius r 0 = 0.15/tin (curve 4) is 

hardly probable, unlike a strongly absorbing soot particle, with only t = 1.3- 10 -8 sec required to heat it to Tmel- 

This dependence becomes linear for an alumina particle only for an intensity of incident radiation I ___ 108 W/cm 2. 

Already for the intensity I = 108 W/cm 2 of incident radiation the melting temperature Tree1 is attained in the 

particle in the time = 3.6. t0  -4  sec. However, this time exceeds substantially the times of temperature relaxation 

t o = r 2 c ( T ) p / 2 ( T ) .  Actually, the temperature relaxation times are equal for the initial temperature, t o = 1.7- 10 -9 

sec, and at the melting temperature, t o = 0.3.10 -10 sec. Consequently, in the case under consideration the 

temperature field distribution is practically uniform [9 ]. 

With a tenfold increase in the particle radius, the absolute value of maximum heat release increases by 

approximately two orders of magnitude, and the distribution nonuniformity of heat sources increases as well. To 

calculate the time required to attain Tmel in the case under consideration, the following approximate formula is 

obtained: 

t = 2.01.104 i-1.04. 
(5) 

The calculation error does not exceed t3%. According to (5), for I = 108 W/cm 2 the time for attaining Tmel for a 

particle of radius 1.5 Hm is t = 9.3.10 -5 sec, which is approximately one-fourth of the time required for a particle 

with r0 = 0.15 Hm and is larger than the temperature relaxation time. A comparison reveals that 9.5.10 -4 sec is 

required to heat an alumina particle of the considered radius by radiation with the intensity I = 107 W/cm 2, which 

is longer by approximately a factor of i06 than for a soot particle. It is noteworthy that the absorption index of 

alumina is almost seven orders of magnitude lower than for soot. The discussed heating conditions for a spherical 

alumina particle pertain to the situation where the heating time is also longer than the time of temperature 

relaxation. In such heating, the nonuniformity of the temperature field distribution in a particle does not exceed, 

as calculations show, 10% for intensities up to I = 108 W/cm 2. 

With a further size increase for the alumina particle, the focusing of radiation in the shadow hemisphere 

becomes even more pronounced. The density of the electric intensity increases by several orders of magnitude (see, 
e.g., [13 ]). As a consequence, heat release in the particle increases, which creates favorable conditions for rapidly 

attaining the melting temperature. Table 1 presents calculation results for the heating of melted alumina particles 

of different radii by irradiating them with the intensity 1 = 109 W/cm 2 at the wavelength 2 = 1.06/~m. In almost 

the all cases of heating (with the exception of particles with r o = 5/zm) given in the table, the time for attaining 

Tme I is less than that of temperature relaxation. It is seen that with an increase of the radius of the alumina particle 
the time for attaining the melting temperature decreases, unlike the highly absorbing soot particles, where the 
analogous dependence tmel(r) is of opposite nature [2 ]. The temperature field distribution in such particles is rather 

nonuniform and is largely characterized by the distribution of the heat sources. For instance, in heating a particle 
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Fig. 3. Topographical projection of the temperature distribution in the main 

cross section of a spherical alumina particle with ro = 15/z o, I = 109 W/cm 2, 

2 = 1.06 btm, m = 1 .79 - i .  10 -7 at the moment t = 1.03.10 -7 sec. 

,of radius r0 = 15/~m to the melting temperature the degree of heat release nonuniformity is close to 90%; i.e., 

upon attaining Tree 1 in the shadow hemisphere,  the particle remains almost "cold" in the illuminated hemisphere. 

This is illustrated in Fig. 3 by the topographical projection of the temperature distribution in the plane of the cross 

section of a great circle of an alumina particle. The  center of the sphere coincides with the center of the coordinate 

plane xz, and the incident light propagates in the negative direction of the z axis. The  value of T/Tree 1 is counted 

off perpendicularly to the xz plane. As is seen the region, where the melting temperature is at tained is small and 

amounts to 4 % of the total area of the circle, which coincides with the zone of maximum heat release. In the cases 

under  consideration, for evaluation of the heating time of a particle we may neglect the first two terms on the 

r ight-hand side of Eq. (1). Then  the formula for the time for attaining the melting temperature  acquires the form 

tme 1 -- ~p (Tree I - TO) 2/4~ruclB, (6) 

where for simplicity c(T) is replaced by its mean value ~. Calculations show that in this case the time for attaining 

the melting temperature  is determined with an error of no more than 50%. Using this expression for tme 1 and the 

formula for the temperature  relaxation time, we may write a criterion that must be satisfied by the optical and 

thermophysical characteristics of a particle and the intensity of incident radiation in order  to attain the melting 

temperature rapidly: 

2 
4~mcr~ >> 1. (7) 

J" (Tmel - r0)  ~'1 

It is worth noting that  these expressions may also be used for calculation of the heating time of particles 

when superfine optical resonances are realized in the latter. The  heating time of such particles to Tme I may decrease 

by two-three orders of magnitude compared to the heating of a nonresonant  particle for a given intensity of the 

incident radiation as a consequence of an increas3 in the maximum heat release in resonant  particles by the same 

value. 

To sum up, we have revealed that with an increase in the size of alumina particles the time for attaining 

the melting temperature  decreases, unlike soot particles. A relationship is found between the particle parameters 

and the intensity of incident radiation that allows determination of the nature of the heating regime of a weakly 
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absorbing alumina particle to the melting temperature under -vacuum conditions. In the case of rapid attainment of 
the melting temperature an expression is given for evaluation of the time for it. 

The author thanks L. G. Astaf'eva for fruitful discussions, A. P. Prishivalko for constant interest to the 
work, and S. T. Leiko for computer-aided calculations. This work is partially supported by a grant by the Meyer 

Fund established by the American Physical Society. 

N O T A T I O N  

T, temperature, K; t, time, sec; TO, initial heating temperature; Tmeb melting temperature of alumina; t ~ 
time of temperature relaxation; tree1, time for attaining the melting temperature; r, O, ~o, coordinates of a point inside 
a particle; r0, particle radius; c ( T )  and 21 (T), temperature-dependent specific heat and thermal conductivity of 
alumina; 2, mean specific heat; p ,  substance density; E o, electric intensity in an incident wave; 2, wavelength of 
incident radiation; I, intensity of incident radiation; Er,  EO, E~o, components of the electric intensity inside a 
particle; m = n - ik,  complex refractive index of the particle substance: or, Stefan-Boltzmann constant; e, emissivity 

factor; 6Q, relative degree of heat release nonuniformity; Qrn, particle volume-averaged density of the absorbed 

energy; ka, absorption coefficient of a particle. 
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